Recent Results on Doubly Charmed Baryons

CIPANP May 20, 2003

Peter S. Cooper

Fermi National Accelerator Laboratory

Outline

➢ Brief theory and model review
➢ Search methods and Previous results
➢ Where are the isospin partners?
➢ New States - A pair of Isodoublets?
➢ What are these? Properties and production
➢ Conclusions
First Observation of the Doubly Charmed Baryon Ξ_{cc}^{+}

Rutgers University, New Brunswick, New Jersey
SUNY at Stony Brook, Stony Brook, New York
University of Illinois, Urbana-Champaign, Urbana-Champaign, Illinois
University of Michigan, Ann Arbor, Michigan
Cornell University, Ithaca, New York
University of Wisconsin-Madison, Madison, Wisconsin
University of Washington, Seattle, Washington
University of California, Los Angeles, California
The University of Wisconsin, Madison, Wisconsin
University of Virginia, Charlottesville, Virginia
University of California, Santa Barbara, California
University of Cincinnati, Cincinnati, Ohio
University of California, Los Angeles, California
We observe a signal for the doubly charmed baryon Ξ_{cc}^{+} in the charged-baryon mode $\Xi_{cc}^{+} \rightarrow \Xi_{cc}^{0} K^{+}$ in this from SELEX, the charm-hadron physics experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1 ± 0.5 events, a statistical significance of 13.9σ. The observed mass of this state is 3048 ± 1 MeV/c², consistent with resolution; its lifetime is less than 35 fs at 90% confidence.

DOI: 10.1103/PhysRevLett.90.262001
PACS number: 14.65.Qx, 13.30.Rj
5/5
Some Nomenclature

In this talk we replace PDG names with suggestive labels. While SU$_4$ is badly broken by the charm mass it still classifies all the states. There are many model predictions in the 3.5-3.8 GeV range.

\[\Xi_{cc}^{++}(J=1/2) = ccu^{++} \]
\[ccu^{++} \rightarrow \Lambda_c^+ K \pi^+ \pi^+ \]

\[\Xi_{cc}^{+(J=1/2)} = ccu^+ \]
\[ccd^+ \rightarrow \Lambda_c^+ K^{-}\pi^+ \]

\[\Xi_{cc}^{++}(J=3/2) = ccu^{*++} \]
\[ccu^{*++} \rightarrow \Lambda_c^+ K^{-}\pi^+ \pi^+ \]
Many Doubly Charmed Baryon Models

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Model</th>
<th>$\Xi_{cc}(J=3/2)$</th>
<th>$\Xi_{cc}(J=1/2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjorken</td>
<td>1986</td>
<td>Phenom</td>
<td>3.70 GeV</td>
<td>3.64 GeV</td>
</tr>
<tr>
<td>Fleck & Richard</td>
<td>1989</td>
<td>Bag</td>
<td>3.636</td>
<td>3.516</td>
</tr>
<tr>
<td>Fleck & Richard</td>
<td>1989</td>
<td>Quarkonium</td>
<td>3.741</td>
<td>3.613</td>
</tr>
<tr>
<td>Roncaglia</td>
<td>1995</td>
<td>Feynman/Hellamn</td>
<td>3.81</td>
<td>3.66</td>
</tr>
<tr>
<td>Ellis</td>
<td>2002</td>
<td>Phenom</td>
<td>3.711</td>
<td>3.651</td>
</tr>
</tbody>
</table>

Sampling of Models

Overall Features

- ground states near 3.6 GeV
- ground states I=1/2 multiplets degenerate
- Hyperfine splitting around 60-120 MeV
- Most models predict on electromagnetic hyperfine transitions
- Some models predict pionic transitions for J=3/2 - J=1/2
- Model dependent predictions for orbital and radial excitations
SELEX Experiment at Fermilab
Data taken 1996-7 in P-Center @ FNAL

SELEX Experiment
- Forward charm production $x_F > 0.1$
- $\pi^- p$ and Σ^- beams @ 600 GeV
- Typical boost ~100
- RICH PID above 22 GeV
- 20 plane - 4 view svx - $\sigma > 4 \mu m$
Experimental Evidence from 2002

SELEX reported 3 significant high mass peaks

- $\Lambda_c^+ K^- \pi^+$
- $\Lambda_c^+ K^- \pi^+ \pi^+$
- $\Lambda_c^+ K^- \pi^+ \pi^+ \pi^+$

We argued that these states are doubly-charmed baryons
Search strategy and results

- **ccq** weak decays into **csq**. Look for charm, strange and baryon in the final state, starting with Selex’s Λ_c^+ sample: $\Lambda_c^+ K^- \pi^+$, $\Lambda_c^+ K^- \pi^+ \pi^+$

- Look for new secondary vertex between primary and Λ_c^+

- No RICH PID on new $K^- \pi^+$ tracks (5-20 GeV/c - too soft)

- All cuts set (and fixed!) from previous searches (e.g. $L/\sigma > 1$)

ccd^+(3520) results

- Fix Λ_c^+ mass to 2284.9 MeV/c^2 (PDG)

- Right sign has a mass peak at 3520 consistent with resolution. Wrong sign ($\Lambda_c^+ K^+ \pi^-$) has no structure.

- 15.8 signal, 6.2 background, $15.8/\sqrt{6.2} = 6.3\sigma$

- Possion Prob=1x10^-6; anywhere, 1.1x10^-4
ccd\(^+\)(3520) Iso-partner?

- Same cuts as ccd\(^+\) \(\sim 3.5\sigma\) hint in \(\Lambda_c^+ K^- \pi^+ \pi^+\)
- Nothing in wrong sign: \(\Lambda_c^+ K^+ \pi^- \pi^+\)
- \(\cos \theta_K^*\) for mass sidebands (soft vtx tracks). Set cut with \(S_{MC}/\sqrt{B_{tot}}\), \((\cos \theta_K^* > -0.6)\)
- MC signal is flat, expect: \(s \rightarrow 0.8s, b \rightarrow b/3\)

ccu\(^++\) results

- Right sign has a mass peak at 3460 consistent with resolution, \(L=0\). Wrong sign \((\Lambda_c^+ K^+ \pi^- \pi^-)\) - no structure.
- 7.1 signal, 0.9 background, 7.5\(\sigma\), Possion Prob \(< 10^{-5}\)
- 60 MeV is too big for an isospin splitting.

Doubly charmed baryons: \(\Xi_{cc}^{++}(3460), \Xi_{cc}^+(3520)\)
Hard to understand these as an Isodoublet
Where are the Iso-partners?

- MC signal for phase space ccd\(^+(3520)\) decay is flat
- What happens if we apply cos \(\theta_k^* > -0.6\) cut here?
- ccd\(^+(3520)\) strongly attenuated: \(16/6 \rightarrow 5/1\)
- ccd\(^+(3520)\) clearly not like phase space \(\rightarrow L>0\)
- Not Isodoublet with 3460 – different angular dist

New ccd\(^+(3443)\) candidate now very significant

- Before cut we ignored bump at 3443 – only 4\(\sigma\)
- Background departs - bump at 3443 remains
- 7.4 signal, 1.6 background, 5.8\(\sigma\), Prob<3.8x10\(^{-5}\)
- Consistent with \(L=0\) : \(11/7 \rightarrow 7.4/1.6\)
- A partner for the ccd\(^{++}(3460)\) \(\Delta M=17\) MeV
ccd\(^+(3520)\) Iso-partner?

- \(\text{ccd}\(^+(3520)\) mostly has \(\cos \theta^*_{K} < -0.6\)

- \(\Lambda_c^+\) and \(K^-\) back-to-back: \(\cos \theta^*_{K} \cos \theta^*_{\Lambda_c} < -0.25\) keeps 90% of the \(\text{ccd}\(^+(3520)\) signal

- Apply to the ccu\(^++\) sample to search for an Iso-partner for the \(\text{ccd}\(^+(3520)\)

- No signal / little background with \(L/\sigma > 1\).
 Try reducing cut to \(L/\sigma > 0.25\)

New ccu\(^++(3443)\) candidate now very significant

- Bump at 3443 remains – background departs
- 7.4 signal, 1.6 background, 5.8\(\sigma\), Prob<3.8x10\(^{-5}\)
- Consistent with \(L > 0\)
- A partner for the \(\text{ccd}\(^+(3520)\) \(\Deltam=21\) MeV
Recap - A Pair of Isodoublets?
Lifetimes

- Selex uses reduced proper lifetime technique
 \[c\tau = \frac{m}{p_z}[L - L_{\text{min}}], L_{\text{min}} = \sigma \]
- Make simulation templates for different lifetimes
- Lifetimes of all states near our resolution limits
 \(< 30 \text{ fsec} ; \ 0 \text{ not ruled out} \)

Model Predictions

- Guberina, et.al. HQET + 1/M_Q
 - \(\tau[\Xi_{cc}^+] \sim 200 \text{ fsec} \)
 - \(\tau[\Xi_{cc}^{++}] \sim 1000 \text{ fsec} \)
- Observed states don’t seem to follow predictions
- How can the decay rate for ccq states be so large?
Production

Beam Hadrons

<table>
<thead>
<tr>
<th>Luminosity fraction</th>
<th>Σ^-</th>
<th>proton</th>
<th>π^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccu++(3443) signal/ sidebands</td>
<td>6 /10</td>
<td>2 / 2</td>
<td>0 / 1</td>
</tr>
<tr>
<td>ccu++(3460) signal/ sidebands</td>
<td>8 / 9</td>
<td>3 / 0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>ccd+ (3520) signal /sidebands</td>
<td>18/18</td>
<td>4 / 1</td>
<td>0 / 1</td>
</tr>
<tr>
<td>ccd+ (3541) signal /sidebands</td>
<td>7/10</td>
<td>4 / 1</td>
<td>0 / 1</td>
</tr>
</tbody>
</table>

| Total | 86 | 17 | 3 (11?) |

Dominantly produced by baryon beams

for ccd+ $<x_F> \sim 0.35$ (200GeV), $<p_t> \sim 1$ GeV/c - like single charm SELEX

> **Focus (E831) has looked in 250 GeV/c photo-production**

 NO signals with 20K Λ_c^+, many other modes searched - no signals anywhere

> **E791 has looked in 250 GeV/c π^- production** - no signals
Conclusions

- Selex reports 4 high mass baryon states in an apparent pair of Isodoublets.
 - Lower mass doublet is consistent with $L = 0$ decay
 - Upper mass doublet is inconsistent with $L = 0$ decay
- All 4 states decay like doubly charmed baryons with very short lifetimes (<30fs)
- The splitting (~19 MeV) is large for an isodoublet.
- Radiative decays (e.g. $3520 \rightarrow 3443 \gamma$) suppressed below weak decay rate?

Where do these states fit into our theoretical framework?

- Bardeen, Eichten and Hill and suggest these might be the spectroscopy of the cc “nucleus” of a ccq baryon:
 \[J^\pi = 1/2^+ \left[c \uparrow c \uparrow L = 0, J^\pi = 1^+ \right] q \downarrow \quad J^\pi = 1/2^- \left[c \uparrow c \downarrow L = 1, J^\pi = 1^- \right] q \downarrow \]
- Predicted splitting consistent with observed 78 MeV
- First EM transition is $M2$. Decay rate ~ 1/1.5 [fsec]
Conclusions (2)

Other Interpretations

- Narrow very high mass singly charmed baryon states?
 - Like Babar’s $D_s^*(2317)$ and Cleo’s $D_s^*(2460)$?
 - Quark content of $\Lambda_c^+ K^- \pi^+ \pi^+$ is a pentaquark $[c s u \bar{d} u]$ not a baryon
 - Why should there be ultra narrow baryon states with $Q \sim 500$ MeV?

Open questions

- Production
 - $1/2$ of Selex’s Λ_c^+ of come though these states
 - Only seen in forward production by baryons, no π or γ production
- Radiative decay rate – can EM really be slower than weak?
- Who else could confirm? CDF / D0, Belle/Babar, BTeV / LHCb, Compass Selex (pD^+K^-)
Selex observes two Pair of Doubly Charmed Baryons: Two Isodoublets?