SELEX: Recent Progress in the Analysis of Charm-Strange and Double-Charm Baryons

Jürgen Engelfried

Instituto de Física
Universidad Autónoma de San Luis Potosí
Mexico
for the SELEX Collaboration

8-th International Workshop Heavy Quarks and Leptons,
München, October 16th - 20th, 2006
New Results on the Ω_c^0

DCB History, Features, Problems, Solutions
- The Discovery of Double Charm Baryons
- Features, Problems, and Solutions
- New Analysis Features within SELEX

First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$

Lifetime Determination of Ξ_{cc}^+

Summary
- Conclusions
- Future Work
Ω_c^0 in Three Decay Modes

$\Omega_c^0 \rightarrow \Omega^- \pi^+$
Signal: 35 ± 12

$\Omega_c^0 \rightarrow \Omega^- \pi^+ \pi^+ \pi^-$
Signal: 44 ± 14

$\Omega_c^0 \rightarrow \Xi^- K^- \pi^+ \pi^+$
Signal: 28 ± 12

Total sample 107 ± 22 events (nearly half in $\Omega 3\pi$)
Working on systematics of Mass Measurement
Calculate Reduced Proper Time:
\[ct = L - N \sigma / \gamma \]
Here: \(N = 6 \)

- **Proper Time Resolution:** \(\sim 20 \text{ fs} \)

- **Maximize Likelihood for three exponentials (2 background)**

\[
N_s (1 - \alpha) f(t) \tau^{-1} e^{-t/\tau} + \alpha N_B (\beta \tau_1^{-1} e^{-t/\tau_1} + (1 - \beta) \tau_2^{-1} e^{-t/\tau_2})
\]

- **Fit parameters are** \(\tau, \alpha, \beta, \tau_1, \tau_2 \)

- **Use** \(\Omega_c^0 \rightarrow \Omega^- \pi^+, \Omega_c^0 \rightarrow \Omega^- \pi^+ \pi^+ \pi^- \)

- **First separate for each mode, then combined**
New Results on the Ω_c^0

DCB History, Features, Problems, Solutions

First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$

Lifetime Determination of Ξ_{cc}^+

Summary

Ω_c^0 Lifetime

combined (SELEX Prelim.):

$\tau(\Omega_c^0) = 69 \pm 14 \pm 9 \text{ fs}$

PDG: $69 \pm 12 \text{ fs}$

(175 evts from 3 exper)

$$\frac{\tau(\Xi_c^0)}{\tau(\Omega_c^0)} = 1.5 \pm 0.3$$

Theory: ~ 1

$\Omega_c^0 \rightarrow \Omega^- \pi^+: 67.5 \pm 18.0 \text{ fs}$

$\Omega_c^0 \rightarrow \Omega^- \pi^+ \pi^+ \pi^- : 72.3 \pm 20.0 \text{ fs}$

Theory: $1.2 - 1.7$
An excited state and a pair of isodoublets?
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ^-, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ^-, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ⁻, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ⁻, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ⁻, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
...and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
...and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
... and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
...and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+:

In Final State:
- Baryon
- Quarks $csdu\bar{d}$
- Plus pairs from sea
- Cascaded decay chain

Easily accessible in SELEX:

$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$
$\Xi_{cc}^+ \rightarrow pD^+ K^-$
$\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+$
$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
$\Xi_{cc}^{++} \rightarrow pD^+ K^- \pi^+ \pi^+ \pi^-$
$\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+ \pi^- \pi^+$
$\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+ \pi^+ \pi^- \pi^+$

$\Omega_{cc}^+ \rightarrow \Xi_c^+ K^- \pi^+$
$\Omega_{cc}^+ \rightarrow \Xi_c^+ K^- \pi^+ \pi^+ \pi^-$
Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+:

```
\begin{array}{c}
\text{In Final State:} \\
Baryon \\
Quarks \text{ } csd\bar{u}\bar{d} \\
\text{plus pairs from sea} \\
\text{Cascaded decay chain}
\end{array}
```

- Easily accessible in SELEX:

 $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

 $\Xi_{cc}^+ \rightarrow pD^+ K^-$

 $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+$

 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

 $\Xi_{cc}^{++} \rightarrow pD^+ K^- \pi^+ (?)$

 $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$

 $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+ \pi^+ \pi^-$

$\Omega_{cc}^{+} \rightarrow \Xi_c^+ K^- \pi^+$

$\Omega_{cc}^{+} \rightarrow \Xi_c^+ K^- \pi^+ \pi^- \pi^-$
Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+:

\[W^+ \]
\[c \quad s \quad d \quad c \quad d \]

In Final State:

- Baryon
- Quarks $csdu\bar{d}$
- plus pairs from sea
- Cascaded decay chain

Easily accessible in SELEX:

- $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$
- $\Xi_{cc}^+ \rightarrow pD^+ K^-$
- $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+$
- $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
- $\Xi_{cc}^{++} \rightarrow pD^+ K^- \pi^+ \pi^- (?)$
- $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$,
- $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+ \pi^+ \pi^-$
- $\Omega_{cc}^+ \rightarrow \Xi_c^+ K^- \pi^+$,
- $\Omega_{cc}^+ \rightarrow \Xi_c^+ K^- \pi^+ \pi^+ \pi^-$
The Discovery of Double Charm Baryons
Features, Problems, and Solutions

Summary

The Discovery of Double Charm Baryons

New Analysis Features within SELEX

Lifetime Determination of \(\Xi_{cc}^+ \)

First Observation of \(\Xi_{cc}^+ \rightarrow \Xi_c^{+} \pi^+ \pi^- \)

Features, Problems, and Solutions

New Results on the \(\Omega_c^0 \)

Lifetime Determination of \(\Xi_{cc}^+ \)

Jürgen Engelfried

SELEX Charm-Strange and Double-Charm Baryons
Background Determination: Event Mixing

- First decay vertex close to primary vertex: assume all bkgd is combinatoric
- Make combinatoric bkgd by taking first decay vertex from one event, second from other
- Use each single-charm event 25 times to increase statistics

Resulting combinatoric bkgd is absolutely normalized ⇒ Bkgd shape known

![Decay Schematic](image)

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Lifetime Determination of \(\Xi_{cc}^{+} \)

New Analysis Features within SELEX

Background Determination: Event Mixing

- First decay vertex close to primary vertex: assume all bkgd is combinatoric
- Make combinatoric bkgd by taking first decay vertex from one event, second from other
- Use each single-charm event 25 times to increase statistics

Resulting combinatoric bkgd is absolutely normalized ⇒ Bkgd shape known

![Plot](image)

Jürgen Engelfried

SELEX Charm-Strange and Double-Charm Baryons 20/30
New Results on the Ω_c^0
DCB History, Features, Problems, Solutions
First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Lifetime Determination of Ξ_{cc}^+

Summary

$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ – \text{New Analysis}$

Re-analysis of full data set ⇒ More Λ_c cands (1630 → 2450)

- Refit Ξ_{cc}^+ vertex using $\vec{p}_{\Lambda_c^+}$ together with $K^- \pi^+$ tracks ⇒ Better $L1$ resolution
- Use event mixing for background
New Results on the Ω_c^0
DCB History, Features, Problems, Solutions
First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+\pi^+\pi^-$
Lifetime Determination of Ξ_{cc}^+

Summary

$\Xi_{cc}^+ \rightarrow \Lambda_C^+K^--\pi^+$, $\Lambda_C^+ \rightarrow pK^-\pi^+$ – New Analysis

\begin{align*}
\text{Mass } & \Lambda_c^+K^-\pi^+ [\text{GeV/c}^2] \\
\text{Entries per } 5\text{MeV/c}^2 & \\
\text{SELEX Preliminary}
\end{align*}
Features of new Analysis

- **Re-Analysis and Relaxing Cuts on Single Charm:**
 - some more background, but shape is well understood from combinatoric analysis
 - more signal

- **Improved sec. vertex resolution:**
 - Cleaner Signals, access to other modes
 - Possibility (but challenging) to measure lifetime (is around 1 σ)
New Results on the Ω_c^0
DCB History, Features, Problems, Solutions
First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Lifetime Determination of Ξ_{cc}^+

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
New Analysis Features within SELEX

$$\Xi_{cc}(3780)^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

- Re-Analyzed Data
- Restrict to Σ^- Beam
- Peak wider than Resolution
- Half decay to $\Xi_{cc}(3520)$
- Still working on Details

Re-Analyzed Data

Restrict to Σ^- Beam

Peak wider than Resolution

Half decay to $\Xi_{cc}(3520)$

Still working on Details
New Results on the Ω_c^0
DCB History, Features, Problems, Solutions
First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Lifetime Determination of Ξ_{cc}^+

Summary

$\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$ – First Observation

FIRST OBSERVATION: $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$, $\Xi_c^+ \rightarrow pK^- \pi^+$
Comparing the Mass of the Three Decay Modes

$\Lambda_c^+ K^+ L/\sigma_1 > 1.8$

Mass $3521.8 \pm 1.7 \text{ MeV}/c^2$

$\Xi_c^+ K^+ L/\sigma_1 > 0.$

$p D^+ K L/\sigma_1 > 1.$
Lifetime of Ξ_{cc}^+

SELEX Preliminary Results

uncorrected: 30 ± 10 fs
Cuts loose events at small ct
Use MC to correct for this effect
Uncorrected Lifetime: $(30 \pm 10 \text{ fs})$
Corrected Lifetime: $(15^{+10}_{-??} \pm ??) \text{ fs}$
Conclusions

- SELEX is still the only experiment observing Double Charm Baryons
- Published results on
 - $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ (PRL86 (2002) 5243)
 - $\Xi_{cc}^+ \rightarrow pD^+ K^-$ (PLB628 (2005) 18)
- SELEX is re-analyzing the data, with improved efficiency
- Presented $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$
- $\Xi_{cc}(3780)^{++}$ is still there
- First Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+$
- Determination of the Ξ_{cc}^+ Lifetime
Future Work

- Finishing re-analysis of $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$
- Finishing analysis of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+$
- Finishing lifetime analysis
- Finishing $\Xi_{cc}(3780)^{++}$
- Working on re-analysis of $\Xi_{cc}^+ \rightarrow pD^+ K^-$
- Search for Ω_{cc}^+
- Look for Ξ_{cc}^{++} in all corresponding decay modes around 3500 MeV/c^2

STAY TUNED!