High Mass States in SELEX
Have Doubly-charmed Baryons Been Discovered?

Fermilab Wine and Cheese
May 31, 2002
James S. Russ1
Physics Department
Carnegie Mellon University
Pittsburgh, PA
for the SELEX Collaboration

Outline

\begin{itemize}
\item (very!) Brief Theory Review
\item Results from Previous Experiments
\item Selex Preview
\item Selex Single-Charm Baryon Review
\item Observation of High Mass States
\item Are These States Double-Charm Baryons?
\end{itemize}
The SELEX Collaboration

G.P. Thomas
Ball State University, Muncie, IN 47306, U.S.A.
E. Gülmez
Bogazici University, Bebek 80815 Istanbul, Turkey
R. Edelstein, S.Y. Jun, A.I. Kulyaytsev, A. Kushnirenko, D. Mao
P. Mathew, M. Mattson, M. Procario, J. Russ, J. You
Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.
A.M.F. Endler
Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
P.S. Cooper, J. Kilmer, S. Kwan, J. Lach, E. Ramberg, D. Skow
L. Stutte
Fermilab, Batavia, IL 60510, U.S.A.
V.P. Kubarovsky, V.F. Kurschetsov, A.P. Kozhevnikov, L.G. Landsberg,
V.V. Molchanov, S.B. Nurushev, S.I. Petrenko, A.N. Vasiliev,
D.V. Vavilov, V.A. Victorov
Institute for High Energy Physics, Protvino, Russia
Li Yunshan, Mao Chensheng, Zhao Wenheng, He Kangling,
Zheng Shuchen, Mao Zhenlin
Institute of High Energy Physics, Beijing, P.R. China
M.Y. Balat'6, G.V. Davidenko, A.G. Dolgolenko, G.B. Dzyubenko,
A.V. Evdokimov, M.A. Kibantsiev, I. Larin, V. Matveev, A.P. Nilov,
V.A. PrutskoI, A.I. Sitnikov, V.S. Verebyrusov, V.E. Vishnyakova
Institute of Theoretical and Experimental Physics, Moscow, Russia
U. Dersch, I. Eschrich, I. Konorov, H. Krüger, J. Simon
K. Vorwarter
Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
I.S. Filimonov, E.M. Leikin, A.V. Nemikhin, V.I. Rud
Moscow State University, Moscow, Russia
A.G. Atamanouchouk, G. Alkhazov, N.F. Bondar, V.L. Golovtsov,
V.T. Kim, L.M. Kochenda, A.G. Krivshich, N.P. Kuropatkin,
V.P. Maleev, P.V. Neustroev, B.V. Razmyslovich, V. Stepanov,
M. Svoiski, N.K. Terentyev, L.N. Uvarov, A.A. Vorobyov
Petersburg Nuclear Physics Institute, St. Petersburg, Russia
I. Giller, M.A. Moinester, A. Ocherashvili, V. Steiner
Tel Aviv University, 69978 Ramat Aviv, Israel
J. Engelfried, A. Morelos
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
M. Lukys
Universidade Federal da Paraíba, Paraíba, Brazil
V.J. Smith
University of Bristol, Bristol BS8 1TL, United Kingdom
M. Kaya, E. McCliment, K.D. Nelson, C. Newsom, Y. Onel, E. Ozcel,
S. Ozkocuruklu, P. Pogodin
University of Iowa, Iowa City, IA 52242, U.S.A.
L.J. Dauwe
University of Michigan-Flint, Flint, MI 48502, U.S.A.
M. Gaspero, M. Iori
University of Rome “La Sapienza” and INFN, Rome, Italy
L. Emediato, C.O. Escolar, F.G. Garcia, P. Gouffon, T. Lungov
M. Srivastava, R. Zukarovich-Funchal
University of São Paulo, São Paulo, Brazil
A. Lamberto, A. Penzo, G.F. Rappazzo, P. Schiavon
University of Trieste and INFN, Trieste, Italy

High Mass States in SELEX

J. Russ, Wine and Cheese 5/31/02, 2
Flavor-Independent QCD Demands Double-Charm Baryons

- Broken SU(4) provides accurate classification of baryon states.

- All predicted states with $N_{ch} \leq 1$ have been observed.

- Double- and Triple-Charm Baryons must exist.

- Characteristics \sim charm meson spectra
 - ccq potential for cc in $\{3\}$ state is $1/2\,\bar{c}q$ potential
 - cc system in HQET approximation provides static color source to bind q, analogous to D-meson system.
 - finite m_c leads to 3-body effects in binding

SU(4) Baryon Multiplets
Many Models, Many Predictions

<table>
<thead>
<tr>
<th>author</th>
<th>year</th>
<th>model</th>
<th>$\Xi_c(J = 3/2)$</th>
<th>$\Xi_c(J = 1/2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjorken</td>
<td>1986</td>
<td>phenom</td>
<td>3.70 GeV/c^2</td>
<td>3.64 GeV/c^2</td>
</tr>
<tr>
<td>Fleck & Richard</td>
<td>1989</td>
<td>bag</td>
<td>3.636</td>
<td>3.516</td>
</tr>
<tr>
<td>Fleck & Richard</td>
<td>1989</td>
<td>quarkonium</td>
<td>3.741</td>
<td>3.613</td>
</tr>
<tr>
<td>Roncaglia et al.</td>
<td>1995</td>
<td>Feynmann/Hellman</td>
<td>3.81</td>
<td>3.66</td>
</tr>
<tr>
<td>Ellis</td>
<td>2002</td>
<td>phenom</td>
<td>3.711</td>
<td>3.651</td>
</tr>
</tbody>
</table>

Sampling of ccq mass predictions

Overall features of models:
- ground state near 3.6 GeV/c^2
- hyperfine splitting around 60-120 MeV/c^2

- some models predict pionic transitions for $3/2 \rightarrow 1/2$
- most potential model calculations based on non-charmed decuplet-octet splits predict only electromagnetic transitions.
- Model-dependent predictions for orbital, radial excitations
Some Nomenclature

In this talk we replace PDG names by suggestive labels.

- $\Xi_{cc}^{++}(J=1/2) \equiv \text{ccu}^{++}$

 decay: $\text{ccu}^{++} \rightarrow K^-\pi^+\pi^+\Lambda_c^+$

- $\Xi_{cc}^+(J=1/2) \equiv \text{ccd}^+$

 decay: $\text{ccd}^+ \rightarrow K^-\pi^+\Lambda_c^+$

- $\Xi_{cc}^{++}(J=3/2) \equiv \text{ccu}^{+++}$

 decays:

 $\text{ccu}^{+++} \rightarrow K^-\pi^+\pi^+\Lambda_c^+$
 and $\text{ccu}^{+++} \rightarrow \text{ccd}^+\pi^+$
Previous Experimental Evidence
Experimental Evidence Today - a Preview

Selex reports 3 significant high-mass peaks

\[\Lambda_c^+ K^- \pi^+ \]

Mean 3520 MeV/c^2

\[\frac{\text{signal}}{\sqrt{\text{back}}} = 6.4\sigma \]

\[\Lambda_c^+ K^+ \pi^+ \]

Mean 3460 MeV/c^2

\[\text{Sigma 3.5 MeV/c}^2 \]

\[\frac{\text{signal}}{\sqrt{\text{back}}} = 5.6\sigma \]

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

Mean 3780 MeV/c^2

\[\text{Sigma 24 MeV/c}^2 \]

\[\frac{\text{signal}}{\sqrt{\text{back}}} = 4.5\sigma \]

We will argue that these states are doubly-charmed baryons.
SELEX Apparatus Features

- Forward production
- π, Σ^-, p beams
- Typical Lorentz Boost ~ 100
- RICH identification above 25 GeV/c
Vertex Spectrometer Performance

- transverse vtx resolution 8-15 μm
- 20 highly-efficient vertex planes overdetermine tracks, reduce tracking confusion in high-multiplicity events
- target foils 0.8-2.2 mm thick with 1.5 cm period to localize primary int
SELEX Single Charm Analysis

- Decay vertex separation significance L/σ
- Charm vector momentum points back to primary: cut on $(b/\sigma_b)^2$ (point-back cut)
- Decay vertex lies outside target material (space cut)

$\Lambda_c^+ \rightarrow pK^-\pi^+$ sample used to search for double charm
SELEX Charm Selection Criteria

Charm Selection Cuts for single charm studies:

- secondary vertex significance:
 - $L/\sigma \geq 1$ for short-lived states (Ξ_c^0, Ω_c^0)
 - $L/\sigma \geq 8$ for long-lived states (Λ_c^+, \ldots)

- Pointback ≤ 4 ($2 \sigma_b$)

- second largest miss significance among decay trks ≥ 4.

Λ_c^+ event

- primary vertex tagged by beam track
- secondary vertex must lie outside material
SELEX Double Charm Baryon Search Strategy

2 vertices to consider, L/σ cuts

- ccq baryons can decay to cqq baryon; look for \(\Lambda_c^+ \) plus extra vertex
- Cabibbo-allowed modes: \(c \rightarrow s + W^+ \) ⇒ require \(K^- \) (not \(K^+ \)) at second vertex
- No RICH PID on tracks from second vertex.

- Made independent data sets to search for ccu++ state and ccu++ state
- Used SELEX \(\Lambda_c^+ \rightarrow pK^-\pi^+ \) sample with RICH identification required on p, K-
- search for \(K^-\pi^+\pi^+\Lambda_c^+ \) vertex between primary vertex and \(\Lambda_c^+ \) decay point
PRELIMINARY Results from ccd^+ Search

$K^-\pi^+\Lambda_c^+$ Mass Plot

- Use a baryon to find a baryon: require Λ_c^+ daughter
- look for extra vertex between primary and Λ_c^+
- If it’s double charm, ccq decay has to make a K^-

All requirements are met by the peak at 3520 MeV/c^2

This looks like a ccd^+ Decay!
SELEX ccu^{++} Baryon Data

Is there a ccu^{++} partner to the ccd^+ Candidate?

ccu^{++} candidate channel $K \pi^+\pi^+\Lambda_c^+$

ccu^{++} wrong-sign backgnd channel $K^+\pi^-\pi^+\Lambda_c^+$

- NO RICH PID except on Λ_c^+ tracks
- cuts on data from single-charm analysis
- large mass peak at 3.78 GeV/c^2

- in wrong-sign (K^+) combination, no equivalent large peak
- ⇒ right-sign ccu candidate is not random combinatoric vertex from only primary tracks
Do These Data Match Double Charm?

Data: Fit with Gaussian + Linear Background

- Signal Poisson significance is 5.6 σ.
- The peak is broad.
- Peak mass is at high end of expected range.

Monte Carlo: Simulate weakly-decaying ccu(3780)

- Resolution is $1/3$ the width of the data

Is the 3.78 GeV/c2 object a ccu excited state?
Remove Slow π^+ from ccu^{++} Sample and ... Voila!

Choosing only slow pion costs some signal but minimizes background

cc^+ Mass Spectrum from ccu^{++} Sample

Rediscover $cc^+(3520)$ in independent sample

- Poisson significance of signal peak is $6.3\,\sigma$.
- position, width are same as in cc^+ sample

Check fakes: Increase L/σ cut from 1.25 to 2

- Now have $5.0\,\sigma$ peak
- sideband background falls faster than signal as L/σ is increased.

This state does NOT originate from accidental overlap of primary tracks.
How Did the ccd^+ State Appear in the ccu^{++} Reconstruction?

- slow pions have sizeable track errors
- track is allowed to be consistent with two vertices
- primary pion can overlap with true $K^-\pi^+\Lambda_c^+$ vertex to simulate ccu^{++} state

Event contributes to both ccu^{++} peak at 3.78 and ccd^+ peak at 3.52 when slow pion is removed

Candidate for $ccu^{++}(3780) \rightarrow \pi^+ + ccd^+(3520)$
Are the ccd^+ and ccu^{++} States Related?

The ccu^{++} Decay is Complicated.

- The solid line is the fit from the previous page.
- The background extrapolation is in blue.
- The $ccu^{++}(3780)$ has some decays via π^+ emission to ccd^+. The area shown in magenta represents events like this.
- The area shown in red represents direct decays to $K^-\pi^+\pi^+\Lambda_c^+$

There appear to be two independent decay modes of the $ccu^{++}(3780)$ (??)
Any Other Explanation for These Data?

Look at the Wrong-Sign Plots

\[
\begin{align*}
K^-\pi^-\pi^+\Lambda_c^+ \\
\pi^-\pi^-\pi^+\Lambda_c^+ \\
K^+\pi^-\Lambda_c^+
\end{align*}
\]

- No peaks seen in \(K^-\pi^-\pi^+\Lambda_c^+\).
- No peaks seen in \(\pi^-\pi^-\pi^+\Lambda_c^+\).
- Previously showed no peaks in \(K^+\pi^-\pi^+\Lambda_c^+\).

The \(ccu^{++}(3780)\) is not a reconstruction artifact.

- The Wrong-Sign plot for the \(ccd^+\) shows no peaks.
- The \(ccd^+(3520)\) is not a reconstruction artifact.
Where Are We?

We have shown two new high-mass peaks with high statistical significance.

Decays are consistent with coming from doubly-charmed baryons.

\[
ccd^+(3520) \text{ seen two ways}
\]

- 6.4\(\sigma\) peak in direct search for \(ccd^+\) states
- 6.3\(\sigma\) peak in restricted search from sample of \(ccu^{++}\) candidates
- \(\approx 60\%\) overlap of samples

\[
\text{broad } ccu^{++} \text{ seen in direct search}
\]

- decay analysis suggests that this state may have more than one decay
- statistics are too low to do much more investigation
only $\text{ccd}^+(3520)$ decaying to $K^-\pi^+\Lambda_c^+$

chain decay of $\text{ccu}^{++}(3780)$ to $\text{ccd}^+\pi^+$

- ccu^{++} reconstruction forces random extrapolation to be included along with tracks from $\text{ccd}^+(3520)$
- see clean $\text{ccd}^+(3520)$ peak after removing slow π^+. (left plot)
- ccu^{++} mass distribution (right plot) rises sharply above 3.64 GeV/c^2

- Simulate ccu^{++} with width $\Gamma = 30$ MeV/c^2
- see background step and broad $\text{ccu}^{++}(3780)$ peak. (right plot)
- Drop slower π^+; see narrow ccd peak. (left)

data and simulation agree on peaks, other features
Is There a Narrow ccu^{++} State in SELEX Data?

Look in vicinity of $ccd^+(3520)$ for narrow ccu^{++} state decaying to $K \pi^+\pi^+\Lambda_c^+$

Data show 5.6σ peak at 3460 MeV/c^2.

- State on edge of acceptance ⇒ only 2 evts below 3.4 GeV/c^2
- acceptance changes much faster for 4-prong ccu^{++} vs. 3-prong ccd^+
- simulation: $\epsilon(ccu^{++}(3460))/\epsilon(ccd^+(3520)) \sim 1/2$

Have a third high-mass peak with double-charm decay characteristics
ccd$^+(3520)$ Lifetime

Plot reduced proper length
\[c_t = \frac{m}{pz^*}(l-l_{\text{min}}) \]

\[l_{\text{min}} = 1.25\sigma \] for this sample.

- mean l/σ is 1.94
- Average l is 1.8 mm
- average boost is 62

For each event $\sigma(c_t) \sim c_t$

- blue curve (normalized to 26 events) shows simulation results for 25 fs lifetime - about right!

- $\text{ccd}^+(3520)$ looks like weakly-decaying state with $\tau_{\text{ccd}} \sim 0.5 \times \tau_{\Omega_c}$ (60 fs)
Λ_c^+ Economics

How many Λ_c^+s are associated with double-charm states?

The short answer - about half

How did we get this?

- simulation: 10% $ccd^+(3520)$ detection efficiency if Λ_c^+ is reconstructed
- $ccu^{++}(3460)$ detection efficiency \sim5%.

16 ccd^+ and 7 ccu^{++} \Rightarrow 30 efficiency-corrected events \Rightarrow 300 Λ_c^+s out of 1650

- BR into $\bar{K}^0\pi^0$ is 1/2 that into $\bar{K}^-\pi^+ \Rightarrow 15 \Lambda_c^+$/observed event

- Handwave over modes with more pions: overall estimate 25 Λ_c^+/observed event

ccq’s take \sim40% of the SELEX Λ_c^+’s

- non-chain $ccu^{*++}(3780)$ decays raise Λ_c^+ consumption to about half

- The observed signals don’t violate Λ_c^+ conservation

This sounds enormous, but consider BELLE: double charm there is half single charm.
Charm Lifetimes, $D^0 - \bar{D}^0$ Mixing and Double $c\bar{c}$ Production

P. Pakhlov
(ITEP, BELLE Collaboration)
Charm physics is not abandoned: all experiments show their interest in this field.

At present:

- BaBar measured $y_{CP} = (1.4 \pm 1.0^{+0.6}_{-0.7})\%$ with D^{*+} tag.
- Belle updated $D^0 \rightarrow K^+\pi^-$: $R_{WS} = (0.38 \pm 0.03)\%$.
- FOCUS: new measurement of D^0 and D^+ lifetimes:
 \begin{align*}
 \tau_{D^0} &= (409.6 \pm 1.1 \pm 1.5) \, \text{fs} \quad \text{and} \\
 \tau_{D^+} &= (1039.4 \pm 4.3 \pm 7.0) \, \text{fs}.
 \end{align*}
- Belle observed $e^+e^- \rightarrow 2(c\bar{c})$:
 \begin{align*}
 \sigma(e^+e^- \rightarrow J/\psi \eta_c(\gamma)) \times \mathcal{B}(\eta_c \rightarrow \geq 4\text{ charged}) &= (0.033^{+0.007}_{-0.006} \pm 0.009) \, \text{pb} \\
 \sigma(e^+e^- \rightarrow J/\psi c\bar{c}) &= 0.89^{+0.21}_{-0.19} \pm 0.21 \quad \text{and} \\
 \sigma(e^+e^- \rightarrow J/\psi c\bar{c})/\sigma(e^+e^- \rightarrow J/\psi X) &= 0.61^{+0.15}_{-0.13} \pm 0.12.
 \end{align*}
- Many new results are coming, and come soon.
What About Production?

Which beam hadrons(\(\Sigma\), \(\pi\), p) make these states?

<table>
<thead>
<tr>
<th>state</th>
<th>(\Sigma^-)</th>
<th>proton</th>
<th>(\pi^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>luminosity fraction</td>
<td>0.77</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>ccu(3460) signal</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccu(3460) sideband</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ccu(3780) signal</td>
<td>43</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>ccu(3780) sideband</td>
<td>30</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>ccd(3520) signal</td>
<td>18</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>ccd(3520) sideband</td>
<td>18</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The high-mass states dominantly produced by baryon beams.
Why Does SELEX See These States?

They’re produced in a corner of phase space:

Take ccd$^+$ (3520) for example.

- mean $x_F \sim 0.35$ (200 GeV/c)
- mean $p_T \sim 1$ GeV/c
- they make leading Λ_c^+’s, which have to be reconstructed fully

Other particle production puzzles in this corner of phase space

- Why does the Hyperon beam work? Leading strange baryon production at Fermilab
- The discovery experiment for the Ξ_c^+ (135 GeV Σ beam: WA62)

Cross section calculations for small p_T, large x_F processes are very unreliable. Experiment must lead, and there are surprises.

There are other hints that double-charm may not be so rare

- Large 4-charm/2-charm production ratios seen in Hybrid Emulsion experiments
- BELLE: huge $[J/\psi \Xi]/[J/\psi]$ ratio in continuum e^+e^- collisions.
 We don’t understand the production mechanism, but we see the states
Summary-1

Selex has a high-mass ccd$^+$ candidate at 3520 MeV/c2

- This state decays like a doubly-charmed baryon
- Its mass falls nicely within range of doubly-charmed baryon predictions
- Its lifetime appears to be in the 30 fs range
- The ccd$^+(3520)$ candidate fits all expectations for double charm.

Based on this state, it’s time to remove the question mark.
SELEX has discovered a doubly-charmed baryon.
Summary-2

Selex has a high-mass ccu$^{++}$ candidate at 3460 MeV/c2

- The ccu$^{++}$(3460) candidate decays like a doubly-charmed baryon.
- Its mass is low end of the range expected.
- It lies far from the ccd$^+$(3520) state to be an isospin partner (60 MeV).
Summary-3

Selex has a broad high-mass ccu*++ candidate at 3780 MeV/c^2

- The ccu*++(3780) decay scheme is confusing
- The mass splitting from the lower-lying narrow states is large.

The ccu*++(3780) state doesn’t fit neatly into the basic scheme.

but it’s there.
The Final Word for Today

Selex has observed 3 significant high-mass peaks

• SELEX has preliminary but strong evidence for a family of high-mass states
• These states decay like doubly-charmed baryons
• The spectroscopy is not easy to understand
• The production rate is astoundingly high, but the double-charm world has seen a partner surprise from e^+e^- collisions.

It’s difficult to avoid calling these states doubly-charmed baryons.