New Results in Charm Meson Spectroscopy from FOCUS and SELEX

Peter S. Cooper
Fermi National Accelerator Laboratory
Batavia, IL

Outline

FOCUS (thanks to Rob Kutschke and Eric Vaandering)
Masses and Widths of D_2^{*+} D_2^{*0} mesons
Evidence for D_0^{*+} and D_0^{*0} broad states
Confirmation of $D_s^+(2317)$ and others

SELEX
Evidence for $D_{sJ}^+(2632)$ in $D_s^+\eta$ and D^0K^+
FOCUS Spectrometer

Highlights:

- Segmented target
- Silicon vertexing
- MWPC tracking
- ~200 GeV Photon Beam
- Threshold Čerenkov
- EM/hadronic calorimeters
- Muon detectors
- Charm Photo-production
Selex Experiment at Fermilab
Charmed Hadroproduction with π^-, p and Σ^- beams

SELEX Experiment
- Forward charm hadro-production $x_F > 0.1$
- π^-, p and Σ^- beams @ 600 GeV/c
- Typical boost ~100
- RICH PID above 22 GeV/c
- 20 plane – 4 view SVX $\sigma > 4 \, \mu m$
- data taken in 1996-7
$L = 1$ Charm Decays

3 Hydrogenic (heavy-light) systems: $D^0(c\bar{u})$ $D^+(c\bar{d})$ $D_s^+(c\bar{s})$
D Samples for D_2 Measurement

Photoproduction gives sizable yields with low multiplicity.

Processes studied:

- $\gamma N \rightarrow D^0 \pi^+ + X$
- $D^0 \rightarrow K^- \pi^+$
- $D^0 \rightarrow K\pi\pi\pi$
- $\gamma N \rightarrow D^+ \pi^- + X$
- $D^+ \rightarrow K\pi\pi$

Remove any D^0 candidate with $D^* < 3\sigma$.
(Cleans up $D^0 \pi^+$.)
Fitting without D^*_0 Broad States

Perform a free fit just of D^*_2 parameters. Feed-downs are calculated from PDG values. Still very poor agreement (χ^2/d.o.f ≈ 3) between D^*_2 signal region and the feed-down region. D^*_2 parameters are far from expected values.
Adding D_0^* Broad States

Add S-wave contribution for D_0^* state ($j_\ell = \frac{1}{2}$). Fit is much improved, especially problem region before. CL = 22%. Also could be $D_1^* (j_\ell = \frac{1}{2}) \to D^* \pi$ with an unreconstructed π^0.
FOCUS D_{J^*} Fit Results

<table>
<thead>
<tr>
<th></th>
<th>D_2^{*0}</th>
<th>D_2^{*+}</th>
<th>$D_2^{*+} - D_2^{*0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>5776 ± 869 ± 696</td>
<td>3474 ± 670 ± 656</td>
<td>—</td>
</tr>
<tr>
<td>Mass</td>
<td>2464.5 ± 1.1 ± 1.9</td>
<td>2467.6 ± 1.5 ± 0.8</td>
<td>3.1 ± 1.9 ± 0.9</td>
</tr>
<tr>
<td>PDG03</td>
<td>2458.9 ± 2.0</td>
<td>2459 ± 4</td>
<td>0.0 ± 3.3</td>
</tr>
<tr>
<td>Belle03</td>
<td>2461.6 ± 3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>38.7 ± 5.3 ± 2.9</td>
<td>34.1 ± 6.5 ± 4.2</td>
<td></td>
</tr>
<tr>
<td>PDG03</td>
<td>23 ± 5</td>
<td>25^{+8}_{-7}</td>
<td></td>
</tr>
<tr>
<td>Belle03</td>
<td>45.6 ± 8.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$D_0^{*0}(j_\ell = \frac{1}{2})$</th>
<th>$D_0^{*+}(j_\ell = \frac{1}{2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>9810 ± 2657</td>
<td>18754 ± 2189</td>
</tr>
<tr>
<td>Mass</td>
<td>2407 ± 21 ± 35</td>
<td>2403 ± 14 ± 35</td>
</tr>
<tr>
<td>Belle03</td>
<td>2308 ± 36</td>
<td>2308 ± 36</td>
</tr>
<tr>
<td>Width</td>
<td>240 ± 55 ± 59</td>
<td>283 ± 24 ± 34</td>
</tr>
<tr>
<td>Belle03</td>
<td>276 ± 66</td>
<td>276 ± 66</td>
</tr>
</tbody>
</table>

Errors on D_2^* masses and widths smaller than or same as PDG03 and agree with recent Belle report (hep-ex/0307021).
Excited D_s Mesons

Until spring 2003, this pattern was expected to be repeated in the D_s sector. Two relatively narrow $j_{\text{light}} = 3/2$ states had been observed and broad $j_{\text{light}} = 1/2$ were expected to be there too.

Instead, two new, very narrow states have been observed by the B factories decaying to $D_s^{(*)}\pi^0$.

The first, dubbed $D_{sJ}^{*}(2317)$, was discovered by BABAR and later confirmed by CLEO and Belle.

The second, $D_{sJ}^{*}(2463)$, was discovered by CLEO and confirmed by BABAR and Belle.

$D_{sJ}^{*}(2317)$ also seen by FOCUS

For $j_{\ell} = 3/2$ states, analysis is very similar to D sector; replace π with K^+/K_s^0.

$D_s^+(2317)$ Observation

- Reconstructed in $D_s^+(\rightarrow K^- K^+ \pi^+) \pi^0$ (58 events, inner EM Cal only)
- Correction to π^0 energy based on $D_s^* \rightarrow D_s^+ \pi^0$ and $D^0 \rightarrow K^- \pi^+ \pi^0$.
- Mass (using PDG D_s^+ value) found to be 2323 ± 2 MeV/c^2. BABAR/Belle/CLEO avg. ~ 2317
$D_{sJ}^+(2573) \rightarrow D^0 K^+$ and $D^+ K_S^0$

Simultaneous fit to $D^0 K^+$ and $D^+ K_S^0$. Terms:

- D_{s2}^* signal: D-wave Rel. BW
- Smooth BG shape
- D_{s1}^* & D_{s2}^* feed-down shapes

Common M and Γ, stat. only.

- $M = 2567.3^{+1.3}_{-1.2}$ MeV/c2
- $\Gamma = 28.5^{+4.8}_{-4.0}$ MeV/c2

PDG values are:

- $M = 2572.4 \pm 1.5$ MeV/c2
- $\Gamma = 15 \pm 5$ MeV/c2

First observation of $D^+ K_S^0$ decay mode. Comparable errors to PDG averages
Summary Of FOCUS Results

- Same paper presents evidence for broad (D^{*0}_0) states in $D^+\pi^-$ and $D^0\pi^+$ final states (first evidence in $D^0\pi^+$).
- Combined paper on excited D_s states in preparation.
- $D^{*}\pi^{\pm}$ under study for other $L = 1$ states.
- Renewed interest in sector due to “strange” charmed mesons
Heavy-light spectroscopy

- Model predicts mass and widths – works well for $D(c\bar{d})$, but not for all $D_s(c\bar{s})$
- 2003 – e^+e^- found $D_s(2317), D_s(2463)$ – below DK threshold, inconsistent with model
- Higher states – expected above $D^{(*)}K$ threshold – therefore broad and hard to observe
SELEX search for $D_{sJ^+} \rightarrow D_s^+ \eta^0, D^0 K^+$

SELEX single charm samples (few % FOCUS)

This analysis uses D^0 and D_s data
η⁰ signal in CHARM trigger

- Eγ > 2 GeV,
- Eγγ > 10 GeV,
- Nγ < 10
- Fit to: exp + Gaussian + constant
- good fit

Fit M(η⁰) 544.8 ± 2.9
PDG M(η⁰) 547.3 ± 0.12
Fit resolution 27.8 ± 4.3
MC resolution 30.2 ± 1.2

- η⁰ mass agrees with PDG value.
- MC represents resolution well.
η and Ds selection

- Eγ > 2 GeV, Eγγ > 15 GeV
- η0 mass region: M_{PDG}(η0) ± 60 MeV
- 5M η0 in 150M candidates
 S/N ~ 1/30
- 0.15 η0 candidates /event

- L/σ > 8, pvtx < 8
- |M(KKπ) – 1968.5| < 25 MeV
- ~1.2 η0 candidate / Ds candidate
New charm-strange meson

- Combined clean sample of D_s with η^0 candidates

- η mass constrained $p_\eta = [M_{PDG}(\eta), p]$

- 615 η^0 cand in 554 D_s cand

- $103 \pm 27 \eta^0$ signal events

Clear peak near 2635 MeV/c2

Event mixed background technique

η^0s from previous 25 events + D_s candidates

Background consistent with just combinatorics – all sidebands flat.
Heavy-light spectroscopy now

New state lies above $D^{(0)} K$ threshold

Look for $D_s(2632) \Rightarrow D^0 K^+$
Fitting $D_s (2632) \rightarrow D^0 K^+$

- Strong selection criteria on D^0 & K^+
 - $D^0 \rightarrow K^- \pi^+$ only (S/N 4/1)
 - $L/\sigma > 6$, svtx $\chi^2 < 3$, pointback $\chi^2 < 5$
 - $\text{Prob}(K^+) > 10 \text{ Prob(any other)}$
- Wrong sign background constant
- Fit with 2 [BW convolved with Gaussian] + constant background
- Fix resolution from MC (4.9 MeV)
- New state is narrow (resolution only)

Count $S = 21$, $B = 7.0 \pm 0.6$, $(S-B)/\sqrt{B} = 5.3 \sigma$

3 bin Poisson excess probability = 2.5×10^{-5}

Fit events: 13.2 ± 4.9, Mass 2631.5 ± 2.0 MeV/c2

A 90% CL upper limit $\Gamma < 17$ MeV/c2
D_{sJ}(2632) Branching Ratios

- Most models say that D^0K^+ coupling should be much bigger than D_s^+ \eta^0
- Phase space favors D^0K^+ mode by 2.3x
- Acceptances given a detected D(s) meson are comparable
- We see 3x as many D_s^+ \eta^0 decays as D^0K^+

SURPRISE: \(\Gamma(D^0 K^+)/ \Gamma(D_s^+ \eta^0) = 0.14 \pm 0.06 \)
D_s (2632) summary

<table>
<thead>
<tr>
<th>State</th>
<th>D_s (2632) $\rightarrow D_s\eta$</th>
<th>D_s(2632) $\rightarrow D^0K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass</td>
<td>2635.4 ± 3.3</td>
<td>2631.5 ± 2.0</td>
</tr>
<tr>
<td>Sign.</td>
<td>6.2σ</td>
<td>5.3σ</td>
</tr>
<tr>
<td>Events</td>
<td>43.4 ± 9.1</td>
<td>13.2 ± 4.9</td>
</tr>
<tr>
<td>χ^2 / n_d</td>
<td>1.10</td>
<td>0.77</td>
</tr>
</tbody>
</table>

- ✔ Average D_{sJ}^+(2632) mass 2632.5 ± 1.7 MeV/c^2
- ✔ $\Gamma<17$ MeV/c^2 @ 90% CL(D^0K^+)
- ✔ $\Gamma(D^0K^+)/\Gamma(D_s^+\eta^0) = 0.14 \pm 0.06$
Not seen in e^+e^- or photoproduction

CLEO Preliminary
20 fb$^{-1}$

Thanks to Rich Galik (Cornell)

FOCUS (unpub) Thanks to Rob Kutschke (FNAL)

Babar hep-ex/04080087

• Not Made?
• Not there?
• Babar only sees $\sim 0.4\%$ $D_s\eta / D_s$

Are any of the higher mass D_s states being produced in e^+e^-?

Figure 4: (a) The $D_s^+\eta$ invariant mass distribution. The unshaded distribution (m_S) corresponds to the central region of Fig. 3a while the shaded distribution is obtained using Eq. 4. (b) The $D_s^+\eta$ mass distribution obtained by subtracting the distributions of (a).
Summary of Selex Result

$D_s^+ \eta^0$ Observed a clear peak of 43.4 ± 9.1 events with a significance of 6.2σ at a mass difference 666.9 ± 3.3 MeV/c2 above ground state

$D^0 K^+$ Observed a clear peak of 13.2 ± 4.9 events with a significance of 5.3σ at a mass difference 767.0 ± 2.0 MeV/c2 above ground state

Clear evidence for a new state $D_{sJ}^+(2632)$ at 2632.5 ± 1.7 MeV/c2 with $\Gamma < 17$ MeV/c2!

Result accepted for publication in PRL (after much hand-wringing on both sides)

This state is definitely NOT seen in e^+e^- (CLEO, Babar) or in photo-production (FOCUS)?

CONCLUSIONS

Heavy-Light systems still require exploration and explanation

Can $D_{sJ}^+(2632)$ be confirmed?

Are there other states to be found; wide or narrow?

Who are these guys ($I^G J^\pi$, etc.)?

Exotica? (21 cites for the D_s^+ (2632) preprint include some eclectic explanations)

Will we have a descriptive “post-diction” of this spectroscopy to build on the relatively successful predictions?